PHASE PLANE ANALYSIS AND OBSERVED FROZEN ORBIT
FOR THE TOPEX/POSEIDON MISSION™
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The existence and stability of low eccentricity frozen orbits in a zonal
geopotential perturbed by atmospheric drag, solar radiation pressure (SRP), and
a continuous along-track thrust is studied. General expressions are derived for
_ the steady state eccentricity and gravity-only phase plane trajectories. These
conrownrs —) gravity-only esemtess are limit cycles that arise from a Hopf bifurcation as non-
gravitational perturbations pass through zero. Drag is stabilizing and thrust may
be either stabilizing or non-stabilizing. A saddle/node bifurcation is introduced
by SRP. Variations due to shadowing and solar geometry cause the steady state
. to significantly depart from its unperturbed value. This leads to a complicated
phase portrait which.can fold back on itself as the bifurcation parameters change
dynamically. While the TOPEX/Poseidon geometry is such that the saddle/node
bifurcation is not crossed i can be crossed repeatedly in other satellite
configurations. The TOPEX/Poseidon satellite has remained in a frozen orbit
throughout its three year primary mission and is expected to remain so during the
extended mission without any eccentricity maintenance maneuvers being
required. Orbital data are used to illustrate the abstract models.

INTRODUCTION

Earth observation missions such as TOPEX/Poseidon are frequently placed in low eccentricity
frozen orbits with the perigee fixed at 90°. In such an orbit, the mean argument of perigee, o, and mean
eccentricity, e, are kept in the neighborhood of a stable critical point. Deviations from the critical point
lead to closed curves in the (e,w) phase plane when only central-body gravitational perturbations are
considered. These trajectories remain in the neighborhood of the critical point even under the influence of
such perturbing forces as drag and solar radiation pressure (SRP). Orbital maneuvers can be applied to
recover any significant errors which may accumulate. Frozen orbits exist at all inclinations, even though
they are frequently thought to exist only for nearly-circular nearly-polar and nearly-equatorial orbits and at
high eccentricity near the critical inclination (e.g. Molniya orbits), they exist at all inclinations. The low-
eccentricity frozen orbit was first described for SEASAT! but has also been studied for numerous other
earth-orbiting missions, including the Atmospheric Explorer,>* the Heat Capacity Mapping Mission,>?
LANDSAT* GEOSAT,** and TOPEX/Poseidon,*!° as well as for Martian,''** Venusian,"* and Lunar'*
orbiters. In a more general sense, the expression frozen orbit can also refer to geo-synchronous and sun-
synchronous orbits.’

Existence of the frozen orbit is usually attributed to the balancing of the secular perturbations of
the even zonal harmonics with the long period perturbations of the odd zonal harmonics.!®  Early
treatments obtained an analytic solution through J3 which was then extended to higher degree zonals via
numerical integration of the mean elements.3**1° From a more abstract perspective, frozen orbits arise
from bifurcations'’® or singularities'? in the relevant system of differential equations obtained via the
appropriate Hamiltonian or Lagrangian formulation. While care must be taken to ensure that the definition
of mean elements is compatible with the dynamic formulation, the approach taken is largely a function of
individual authors’ personal biases toward the problem being studied.

Bifurcations arise when constants in the dynamic equations are treated as parameters and allowed to
vary over some physically (or mathematically) realizable range. If the flows of the dynamic system become
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structurally unstable for some values of these parameters -- i.e. the phase portraits of the original and &-
perturbed systems of differential equations are not topologically equivalent -- a bifurcation is said to occur.”
Besides being interesting from an abstract point of view, bifurcations have pragmatic significance: at
bifurcation points, the nature and stability of the critical points may change. This allows the mission
design engineer to identify and classify broad classes of orbits and their sensitivity to various types of
perturbations without the usual black-box approach of tedious numerical integrations.  Hopf bifurcations
form a particularly interesting class of bifurcations. This is because of the theorem, first proven by Hopf in
1942, that proves the existence of stable limit cycles (e.g., closed orbits) in the neighborhood of a Hopf
bifurcation, under certain conditions. A Hopf bifurcation can be identified as follows. Suppose that the
eigenvalues of the Jacobian form a complex conjugate pair A=a*ib. A Hopf bifurcation occurs if Re A
passes through 0 with Im 2 0 as some parameter of the system is varied.

The theory of bifurcations can be used to define a specific mission’s frozen orbit in terms of its
existence and stability properties under quiescent conditions (e.g., low solar and geomagnetic activity). The
process begins with a two-body Hamiltonian for the earth/satellite gravitational interaction. Perturbations
are added as zonal harmonics describing the Earth’s oblateness. As these zonals are added, a tapestry of
bifurcations slowly unfolds. Three families of frozen orbits have been identified in this manner: (1) stable
and (2) unstable families arising from Hopf bifurcations at the critical inclination, and (3) a stable family
starting in the equatorial plane.’* A member of one of these families is then selected as the mission orbit.
Non-gravitational perturbing forces such as drag, thrust, or solar radiation pressure are then added to the
equations of motion. If the subsequently perturbed orbit remains frozen and within mission specifications,
all is well. If not, further examination of: the stability of the perturbed orbit can be perfarmed to determine
the extent of maneuvering which will be necessary to maintain some approximation of a frozen orbit. There
is the added complication that the usual perturbations of interest are non-conservative functions of extremely
dynamic variables (e.g. solar flux, atmospheric density, satellite attitude) and the resulting system of
equations becomes non-autonomous. :

In the present analysis the Lagrangian formulation is utilized and phase space is reduced to two
dimensions by assuming that the inclination and semi-major axis are constant. While this simplification is
appealing since it permits the application of such results as the Hartman-Grobman theorem (that the flows
of the nonlinear system, in two dimensions, are homeomorphic to the linear system in some neighborhood
of the steady state), it is also physically reasonable if 2 and Z can be kept fixed via orbital maneuvers’
independently of e and @. A general solution for the frozen eccentricity is then derived. The stability of
this solution is examined in the phase plane under the influence of various perturbing forces. It is shown
that the frozen orbit arises out of a Hopf bifurcation when non-gravitational forces disappear; limit cycles
appear in the neighborhood of the steady state when the perturbations are small. Drag is stabilizing, while
thrust can be either stabilizing or destabilizing. Solar radiation pressure has a complicated parameter space
describing the orbital/solar geometry which is continually changing. This causes the steady state to depart
significantly from the unperturbed state, thereby dragging the phase plane trajectories with it. For some
satellite/orbital configurations, the steady state can cross additional saddle-node bifurcations as the sun
moves through its B’ cycle. This allows the (e,) trajectory to double back upon itself and curlicue through
the phase plane, a situation which would not be possible in the case of fixed perturbations.

Numerical examples and observations of the TOPEX/Poseidon satellite frozen orbit taken during
its primary three-year mission are provided. This joint US/French mission™ studies global ocean
circulation and its interaction with the atmosphere to better understand the Earth's climate. This goal is
accomplished utilizing a combination of satellite altimetry data and orbit determination to precisely
determine ocean surface topography. The satellite is maintained in a nearly circular, frozen orbit (e = 95
PPM! and @ = 90°) at an altitude of =1336 km and an inclination of i = 66.04°. This orbit provides an

* In fact, in the absence of drag and solar radiation pressure, there are no long term or secular perturbation on 2, while the long-
term variation in inclination due to central-body gravity is smaller by a factor of e than the vanation of gitself.

** The TOPEX/Poseidon Mission is jointly funded by the US National Aeronautics and Space Administration (NASA) and the
French Centre National d’Etudes Spatiales (CNES).

 Parts per million. The difference between the value quoted here and the value derived in the following section is due to the
selection of the operational orbit based upon early numerical calculations which fruncated the zonal expansion at J17.



exact repeat ground track every 127 revolutions (=9.9 days) and overflies two altimeter verification sites.
TOPEX/Poseidon was launched by an Ariane 42P on August 10, 1992. The operational orbit was acquired
some 42 days later, on September 21, 1992, following a sequence of six maneuvers.” -

STEADY STATE SOLUTIONS

The relevant system of differential equations can be obtained from Merson’s® implementation of
Groves'* formulation (see equations A20 and A32 in the appendix). Omitting the explicit dependence upon
semi-major axis and inclination,

flf = B(a,i) + [(1 /e)G(a,i)— eD(a,i)]sina) ’ o
de .
== G(a,i)cosw @

where B, D, and G are given by equations A29, A35, and A31. From equation 2 steady state solutions
(corresponding to é = @ = 0) are possible at either the orbital “north pole” (@ = 90°) or the orbital “south
pole” (@ =270"). It will be seen that only one of these solutions is possible for any given combination
inclination and semi-major axis. Furthermore, although equation 1 produces a quadratic for the steady state
eccentricity, there will be a unique physically realizable solution. At the orbital north pole,
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The south pole solutions exist when both B and G have the same sign, corresponding to the positive root
in equation 6 when they are both negative, and the negative root when they are both positive. At this point
equations 4 or 6 could themselves be studied for bifurcations in terms of the parameters B, D, and G:
‘however, these are a]ready fixed fro the problem at hand (the TOPEX/Poseidon orbit,” B=-9.105x10® sec?,
G=9.094x10*2 sec’?, and D~4.874x10"° sec™) and this problem is left for further study. Since DG << B2
at inclinations sufﬁcxently far away from the cnncal inclination (where B=0) equations 4 or 6 can be

expanded as a series in the small parameter DG/ B~ to give
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A similar result has been given by Rosborough and Ocampo.”? Since equation 7 was derived by assuming
the e<<1, it is not valid if it gives an eccentricity approaching 1 (or larger). It is of vital importance to

Al values quoted in this paper for TOPEX/Poseidon are based upon a truncation of the GEM-T3 gravity field at J20.



include a sufficient number of terms in the expansion; this is illustrated in figure 1 for the
TOPEX/Poseidon orbit. If the calculation had stopped with J9, the predicted eccentricity would be nearly
two orders of magnitude too small, while if it had stopped at J11, the frozen orbit would have been predicted
in the wrong hemisphere! It appears from figure 1 that a minimum of 13 terms are required for this
satellite.

Equation 7 has a singularity at the “critical inclination” which occurs when cosZi=1/5,
corresponding to an inclination of approximately i.;,;.,/~63.435°. Near this inclination, the approximation
that DG<<B? is invalid, since B=0. It is possible to get higher eccentricity frozen orbits near this
inclination. At a slightly larger inclination, G also passes through zero. In the range of inclinations
between the two zeroes, frozen orbit solutions exist at the south pole. The critical inclination has been
studied extensively elsewhere.? For TOPEX/Poseidon e,, = 99.88 PPM. Furthermore, there is a second
singularity in the derivation when D=0, at an inclination of =32.4°, which also demands further analysis.

PHASE PORTRAIT OF THE FROZEN ORBIT

The system of differential equations 1 and 2 can be directly integrated to give trajectories in phase
space. This is fortunate, since the system is non-hyperbolic (has purely imaginary eigenvalues) and the
Hartman-Grobman theorem (the flows of the nonlinear system are homeomorphic to the linear system in
some neighborhood of the steady state) does not apply. Unless one can find a Lyapunov function, there is
no easy analytic method to determine stability, hence the usual introduction of numerical integration. Later,
when non-gravitational perturbations are introduced, the resulting structural instability of the system will
perturb the circular centers seen here into either spiral centers (stable or unstable) or saddle nodes.

Consider the pair (e,w) as the polar coordinates of a vector whose Cartesian representation is

X =ecos® ®

y=esinw )
Then

i=écos@—e@sinw= Sx - cby=i:-(—Gcosa))— y(B +g-sinw) =-G - By (10

y= ésin(o+ea')cosco=—§é +x0 =%(—Gcosa>)+ x(B + —?sinw):B;c (11)

Taking the ratio of the last two equations gives
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where e, =—G/B and C is a constant determined by the § %]
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The phase portrait predicted by equation 14, following the first TOPEX/Poseidon orbit maintenance
maneuver, is illustrated in figure 2. The contours described by both equations 13 and 14 are closed. The
steady state is thus a “center point” of trajectories with periodic variations in eccentricity and argument of
perigee. This periodicity arises from a Hopf bifurcation which occurs when the magnitude of non-
gravitational disturbing forces (e.g. drag) goes to zero.
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Figure 3. Frozen orbit predicted for TOPEX/Poseldon after the first orbit maintenance maneuver.
The tick marks are in days. Non-gravitational forces and subsequent maneuvers are not included.

Calculation of the eigenvalues provides explicit formulas for the period of oscillation of the
linearized system. The Jacobian matrix of equations 1 and 2, evaluated at the north polar steady state is

G G1. B?
J(egs,90%) = [:+eD]cosa) [D—?]smw - |0 - (14)
Asinw e=-G/B G 0
@0=90"

where the approximation BYG>>D (only valid outside of a neighborhood of the critical inclination, see
equation A36 in the appendix) and the result G=A (sce the discussion following equation A31) have been
used. The eigenvalues are the roots of the characteristic equation '

0=det(J - AI)= A2 + B? (15)
hence
A =ti|B| (16)
Thus the period of oscillation is
¢ -1
T= % =270 o s (i—") Pl(O)[ “‘2” D Py(cosi) + cosiPj(cos i)] an

giving a period of approximately 26 months for TOPEX/Poseidon.

NON-GRAVITATIONAL FORCES
Atmospheric Drag

Incorporating the effects of a drag perturbation into equations 1 and 2 gives to lowest order in the
eccentricity (see equations A50 and A5S5 in the appendix)

jd—“)—=B+gsinco————Kp5 (18)
at e e
de (19)

Et_ =—Acos@ — p1K — ppKe

The perturbed steady states are



cosw = —g—( p1+epy) . (20

e= ess SillCO - ess Kgs (21)
Defining Aw=w-7/2+A and Se=e-¢,, and assuming that the perturbations are small,

sinw = sin(7 /2 + Aw) = cos Ao = 1 - (A@)2 2 +--- 22)

cos@ = cos(n /2 + Aw)=—sinAw =A@ + -+ 23)
then

e =—ey K Ps /B 24

K .
80 ==(o1+p2e) 25)

Since /ey, = —Kps/B << 1 the approximation e ~e,, can be used in the right hand side of equation 25. For
TOPEX/Poseidon, B=-9.105x10° sec?, G=9.094x10"2 sec™, K =9.86x10 3km’ /kg-sec, and
p=4x10" kg/km? (orbital average, low flux, Jacchia-Roberts atmospheric model®). Hence
|Kps| < 4 x 10% sec™!. The Jacobian of the perturbed system is then

gcosa) ——G—sinw+-Kﬁ _Gho G
J= 82 82 = () e_%, (26)
Gsino -Kp, G -Kp,
and the characteristic equation of the linearized system is
22 + (GAw/ess + pK) A+ (Gless)(p2KA® + Glegs) =0 @7
The eigenvalues are
1 — :
A= -2-{—(K Py + GAwfes) ‘f(sz + GAco/e_,_,)2 - 4(G/ess p2KAD + G/ess)} (28)

Since the function defined by equation 28 is continuous and

lim A= i1fG2/e_‘,2s = +iB 29

p—0

the conditions for a Hopf bifurcation are met. Hence one expects oscillatory behavior to occur in the (e,®)
plane. The condition for stability is that the real part of the eigenvalue be negative, i.e.,

Kpy + GAwfess >0 (30)
Substituting equation 25 gives
pa(l+efess)>—p1 GD

These oscillations will produce stable spirals when this condition is met. For the typical sanellite orbits we
are considering the density® peaks at ~14"00™ local time, and can be pheonmenologically represented by

p(E)=p + dpcos(E - Emax) (32)

where p and 8p are positive constants and Ep,x is the eccentric anomaly at maximum density. Then
since py =(8p/2)cosEpax and pp = p,



p2(l+efess) + py > po + p1 = p +(80/2)cosEmax > P —(30/2)>0 & Sp<2p (33)

Since 1+ e/egs =2, values of Jp as large as =~4p will usually be sufficient to guarantee that equation 30
is satisfied and the perturbed phase plane trajectories are stable. For TOPEX/Poseidon at low flux values,
p=4x10""kg/km>, 8p=2x10""kg/km> (using a Jacchia-Roberts* model) and hence the stronger
condition is easily met. Thus drag should have a stabilizing influence.

Constant Density Atmosphere

When the density p is fixed over the entire orbit, equations 18 and 19 become
dw G

—=B+—sinw (34)
dt e o

de 1

L - 35
- Gcosw 5 PKe (35)

and the new steady state is

&= tan™}(2G/Kpegs) (36)
é = ey |1+ (PKe,s /2B) (37)

For TOPEX/Poseidon, G =9.094x10"2sec™!, A=15m?, adK =9.86x10 2 km> / kg — sec, hence
Aw =90~ =125°x107°. A shift in perigee by as much as one degree would require a density of 33
gm/km3, corresponding to the maximum Harris-Priester density” at 300 km. Thus drag does not
significantly affect the frozen orbit for TOPEX/Poseidon. The Jacobian at the new steady state (¢,®)is

G G . _pK G
—Cos®W ——5sinw 2 es
A e _
Heo)=1® € | ce px (38)
Gsinw -—=pK s |
2 e=e sy 2

O=0
and hence the eigenvalues form a complex conjugate pair

A=-L2 218 , (39)

Since the real parts of the eigenvalues are negative, the trajectories form stable spirals. Hence the effect of
drag in a constant density atmosphere on the frozen orbit is stabilizing.

Continuous Along-Track Thrust

~ Shortly after the TOPEX/Poseidon launch, analysis of orbital data revealed the presence of hitherto
unexpected accelerations causing a decay in the semi-major axis as much as 60 times larger than could be
explained by atmospheric drag. These accelerations steadily declined over the next six weeks to a residual
level which was approximately seven to ten times larger than drag in magnitude, varied with yaw mode, and
alternated between orbital decay and boost.”* The original accelerations have since been atiributed to
outgassing, while the residual accelerations have been attributed to non-symmetrical radiation exposure of
the solar array over a single orbit and thermal radiation being emitted by the satellite.””* These
accelerations display characteristics of continuous low-level along-track thrust forces on the order of several
micro-newtons. '

Applying a continuous along-track thrust to equations 1 and 2 gives (see equations A57 and AS8)

49 _5+Ssno (40)
dt e

£=—Gcosw—£e @1)
dt my



These are completely analogous to equations 34 and 35 for a constant-density drag, with pK /2 replaced by
27T /mv. This is not too surprising since drag acts along the direction of motion. Consequently,

& = tan™}(mvG/2Tegs) (42)

e=eg / \[1 +(2Teys /mvB)2 (43)

For typical TOPEX/Poseidon parameters and a force of 2 uN, Aw=0.14°. A change of perigee by one
degree would require a thrust of 14 pN. One significant difference between a continuous thrust and 2
constant drag is that the thrust can be applied in either direction, while the density is non-negative. Thus a
continuous thrust can be either stabilizing or destabilizing. Furthermore, while the concept of a Hopf
bifurcation was just a useful mathematical fiction realizable only in the limit of zero drag, thrust provides a
physically realizable Hopf bifurcation.

Solar Radiation Pressure
Solar radiation pressure (SRP) changes equations 1 and 2 to (see equations A63 and A70)

4 _pCno+ ¥ (44)
dt e e
%:;=—Gcosco+H “5s)

where H and W are functions of the solar direction vector with respect to the orbit plane. The steady state at
each pole bifurcates into a pair of states (&+,®) such that

@=cos"{(H/G) (46)

ei——%,-+ —G? - H? , @7

B
These steady states may not be physically realizable, however. For the eccentricity to be real-valued
immediately gives
|H/G|<1 48)

If this condition is not met then no steady state solutions exist. Furthermore, the eccentricity must be
positive. For &, to exist, this is equivalent to

w<JGZ-H?, B>0 (49)
w>+G2-H2, B<0 (50)

For &_ to exist, the equivalent conditions to equations 49 and 50 are

<—G2—H?, B>0 (51
>-G2-H?, B<O (52)

The Jacobian at the steady states is

J= (Gfés)cosd —(G/ei)sma) W/ei [ H/e B/éi] 53)
Gsin® 0 ~&B+W) O
which has eigenvalues at
;,-__+ IJH/ a;) - 4(B% + BW /2y) (54)

There is a Hopf blfurcatxon when H and W pass through zero simultaneously, or when H passes through
zero while B + BW /&3 >0.If

B2+ BW /&, <0 ‘ (55)



the critical points will be saddle nodes. If the argument of the square root is negative and H<0, the steady
state will be a stable spiral center; if H > 0, and unstable spiral center. As the argument of the square root
in equation 54 passes through zero with H#0, a saddle-node bifurcation occurs. The condition for centers is

2 2
w < G- —125H | e=z, (56)
[c2 _ g2
2 12
welZF —H” o 7

N

These results are summarized in figure 4. While the value of B is essentially fixed for any satellite
(assuming semi-major axis and inclination do not change), W and H are dynamic functions of the solar
geometry. As the geometry changes, the value of (H, W) moves through the H/W plane. Whenever the
point (H,W) crosses regional boundaries, the nature of the steady state changes. So long as (4, W) remains
in the shaded areas, the critical point (the steady state of eqns. 44 and 45 in (e,) space) be a spiral center; if
(H, W) crosses into the lined area, the steady state becomes a saddle node. The spiral center is stable when
(H, W) is on the left half plane, and unstable when (H, W) is on the right half plane. If (H,W) passes into
the unshaded area, the steady state disappears entirely. There is potentially a very complicated dynamic,
with the steady state alternately stable, unstable, bifurcating, or disappearing entirely.

(a) W@p). (g W(eB)  (d)
B>0 B<0
H ' H{o,B’
(@B) | (0,5")
H(o,p) -IG IGI

W(e.B)

B>0

1 Center E= Saddle Point

Figure 4. Bifurcation parameter space for SRP, with W and H, defined by equations A63 and A70,
treated as parameters. (a) and (b): parameter space for e,; (c) and (d): parameter space for e..
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Figure 5. Parameter space evolution corresponding to figure 4d for the TOPEX/Poseidon primary
mission. (a) Actual orbit. (b) Hypothetical satellite with one half the mass of TOPEX/Poseidon.

For TOPEX/Poseidon, B ~—9.105x102 sec™! and G =9.094 x 10712 sec™1, hence the possible
situations are those illustrated in figure 6b for &, and figure 6d for é_. The effect of solar radiation pressure

on the steady state is illustrated by figures 5 and 6. Figure 5a shows the variation in the H/W plane.
Since the location of (H, W) is always within the circle of radius IGl, the steady state at &, does not exist.

Figure 6a shows the variation of the steady state at &_ resulting from this motion in the H/W plane; it



alternates between stable and unstable spirals with a period of approximately 56 days. The predicted
variation of the actual orbital parameters for the three year primary mission, ignoring maneuvers, is shown
in figure 6b. The mean element propagations illustrated in figures 6 and 7 were performed using GTARG”
which has been described elsewhere.”® GTARG has been updated to account for the perturbations on the
frozen orbit described in the appendix. From equations A63 and A70 in the appendix, the variation in the
H/W plane is inversely proportional to the satellite mass. Halving the mass would double the rate of
variation; the evolution of such a hypothetical system in the H/W parameter plane is shown in figure 5b,
and in the (e,w) phase plane in figure 7. In this case the system passes through all three regions of the
parameter plane, stable/unstable spiral, saddle, and total non-existence of a stationary point.

140 180
130 ¢+ 160
=
& 1201 140
2 1104
% w0 5 120
& 100 4
8 g; 100 |
£ w 5
2 80
o
VB; 80 + I=1 o
B 70+ §
3 40
& 6]
50 ¢ 20
40 f 1 ¥ t 3 0 ; } } -
45° 60" 75° 30° 165' 120° 135° 45° 60" 75° 30" 105" 120° 135°
Steady State Argument of Perigee Argument of Perigee

Figure 6. Effect of solar radiation pressure on TOPEX/Poseidon frozen orbit over three year
primary mission. (a) Variation of steady state. (b) Predicted evolution of frozen orbit ignoring
maneuvers. The unperturbed curve encloses the shaded area.
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Figure 7. Predicted evolution in (e, @) phase plane for the hypothetical satellite of figure 5b.

OBSERVATIONS

Operational orbit determination for TOPEX/Poseidon is provided by the Goddard Space Flight
Center Flight Dynamics Division (GSFC/FDD) using GTDS® to process observations obtained via the
TDRSS.? Mean elements are calculated by removing all central body zonal, sectorial, and tesseral
harmonics, second-order J2, and third-body (luni-solar) perturbations acting over a specified time interval, as
described by Guinn.® An analysis of variations in the observed orbit, particularly g and i, has been
presented previously.® In summary, the frozen orbit was maintained throughout the TOPEX/Poseidon

* GTARG is available from COSMIC.* A description is available on the World Wide Web at URL hitp//Awww.cosmic.uga.edu.
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prime mission without requiring any dedicated
maneuvers. Although eight orbit maintenance
maneuvers (OMM) were performed during this
period to recover semi-major axis decay due to
drag and maintain the exact repeat ground track,
every effort was made to not increase e when
performing an OMM. The predicted evolution
of the frozen orbit after each maneuver is
illustrated in figure 8. The corresponding
observed mean eclements derived from the
GSFC/FDD  TDRSS observations  are
. summarized in figures 9 through 11. Figure 9
shows the observations in the x/y phase plane
described earlier, with post-maneuver predictions,
including all of the perturbations described in the

— s

Eccentricity, PPM
85583888

45

10

60° 75 90° 105°
Argument of Perigee

ure 8. Frazen orbit following each maneuver as
predictet:g‘ GTARG. Orbit maintenance maneuvers

M) are annotated sequentially.

appendix as predicted by GTARG. The unperturbed (gravity-only) solution is also shown. While it is not
possible io see trends from figure 9 due to the density of data points, it does clearly demonstrate that the
frozen orbit has remained relatively close to the gravity-only solution (the circle in figure 9). The actual
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Figure 9. Observed and predicted frozen orbit for TOPEX/Poseidon. The bold curve is identical to

the bold curve of figure 8, but is plotted In the (;

plane. The symbols show observed values of the
and figure 9 correspond to the same area of phase space and are bordered by the gravity-only
solution given by equations 13 and 14. The shading is not significant, but is added for clarity.

esinw) coordinate plane rather than the (e, )
elements. The shaded areas of figure 8

evolution of the frozen orbit as a function of time is illustrated in figure 10. Figure 10a shows the

observed and predicted eccentricity as a function of time.

The mean eccentricity derived from FDD

observations is shown by the light-weight curve, the gravity-only prediction at the start of the prime
mission is indicated by the medium-weight curve, and the post-maneuver predictions including all
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perturbations modeled in the appendix by the heavy-weight curve. The effect of solar radiation pressure is
clear from the figure.

40 i
Gravity Only
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N
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Sep-92 Dec-92 Mar-93 Jun-93 Sep-93 Dec-93 Mar-94 Jun-94 Sep-94 Dec-94 Mar-95 Jun-95 Sep-95

Figure 10. Observed and modeled TOPEX/Poseidon frozen orbit. Tick marks correspond to the 15th of the month,
Maneuvers are indicated by vertical grid Hines.

SUMMARY

The low eccentricity frozen orbit arises from a Hopf bifurcation when perturbing forces, such as
atmospheric drag, solar radiation pressure, or along-track thrust, pass through zero. Drag has a stabilizing
effect, while thrust can be either stabilizing or nonstabilizing. Solar radiation pressure is the most
significant non-gravitational perturbation for TOPEX/Poseidon. It can cause the frozen orbit to repeatedly
pass through both the Hopf bifurcation and a second saddle/node bifurcation, causing the steady state to
alternatly be a stable spiral center, an unstable spiral center, and a saddle point. The result is a complicated
phase trajectory which repeatedly loops back upon itself. For TOPEX/Poseidon the saddle/node bifurcation
is never crossed and consequently the observed trajectory is never very far from the perturbation-free frozen
orbit (drag and solar radiation pressure equal to zero), even when the effect of maneuvers for semi-major axis
maintenance are taken into account. The effects of luni-solar gravity, non-spherical solar reflection, and
differential black-body radiation have not been considered and may account for some of the difference
between the predicted and observed phase portraits. Nevertheless, the TOPEX/Poscidon satellite continues
in a frozen orbit at the end of its primary three-year mission, although not a single eccentricity-maintenance
maneuver was required. During this same period a total of eight drag make-up maneuvers were performed.
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APPENDIX - PERTURBING FORCES
Zonal Gravity Field

The general zonal perturbauons on the mean eccentricity and argument of perigee are given®* in
terms of the Legendre Polynomxals

_f—: —Zul( eé) Z (t(fk1)1)| ”{k(w—g)]x
{[(H—z 18+ pl+1(§)] "(i)—zwtipzlf-l('f)E?ko(i)}

ERE ({2 ) 3, o3|y One el 2

(AD

where
L (A3)
U =2-040 ’ (A4)
VS Ok Ej AT TE) (45)

Elko( D)= “k g 2' (0)[Iccoti le(cos i)..le+1(°°s ‘)] v (A6)

Equations Al and A2 are considerably simplified in the low e appronmanon From A3, when e<<1
(1-82) P <2t (A7
Hence
PEO=192(1-82) 7 P @~etr =510 +ZCD 5, 40(2) (A8)
where the fact that Py(1)=1 and Pj(1) = £(£ + 1)/2 have been used.”* Combining the last two results
PEL(5)=(-nkr D2 (1- £2 )(k+1)/2 (k+1) (E)=ek+1 P(k+1) (1)__e 840(t-1) (A9)

Substituting equations A8 and A9 into equation Al gives, to lowest order in e,

- -y
@ _Zm[ ) ws[ ](l+k 1)
{[(‘*"’Iako +6y1 (; 1))+6 l(lz 1)}‘,”‘ (i)-2c0ti EQ, (;)[6k0 +8y “(“1)]}

The Kroeneker delta collapses the summation over k to only two terms:

3 T, (e o
_df._ ) —z_znl (_) {8 3;[[! ¢ g)(‘)'z“’“’ftoo]
0 (A11)
+ (l; 1 cos(w—uﬂ){(ue%)%l(t—l)Vﬁ ())-2coti Egyg %z(g-l):'}

k=1

(A10)

. . . k
The associated Legendre Polynomials are defined as Pek(") = (—l)k’zT"‘ (x) and T‘k(x) = (l—xz) lth(k) (x). The compact

rotation P{9)() ("/dxk)}’,(x)l o A Pi(®) (dP,(z)/dx)| _g sused.
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%a _ _i’% (_;_) {z(l;l) V-2 oot Egoo [l—;"zol —e(£-1)coti E?lo]cos(m—%)} (A12)

The explicit dependence on inclination has been omitted from equation A12. To further and focus on the
sensitivity to variations of e and @, define the auxiliary functions

R l
it (a)=nf,(—‘) (A13)
BrO=2E R0 2By con (A14)
7e (o=—2—V,1 ® (Al5)
84 ()y=(t-DES () coti (A16)
Ba,i)=-Y ji(@)Be(i) (A17)
el CHERSWC)716) (A18)
D(a,i)="-Y, js(a)s,(D) (A19)

where all of the summations are over the range £=2 to /=. Equation A12 can be written more compactly
i’. =-3 j,(a){ﬁ,(i) + -;y,(o - e5[(i)]cos(a> - %)}
==Y js(@Be () -lco{w - 1)2 jr @y i)+ ecos(w - -’25)2 j2(@)846) (A20)

e Sl -

Similarly, subsutuung equation A10 into equation A2 gives

— =—2 nly ( ) sin(@ - 7/2 )____(Z i1y T}(O)Tll(cosi)e!(l -1)

¢+ 2D
=_znf,( e) sin(® — 7/2) —— Py_1 (0)P4(cosi) sini v
i= @D
Using equation 12 and defining the auxiliary functions (analogous to equations A13 through A14)
)= %P,_I(O)Pj(cos i)sini (A22)
Alai)==Y je(a)xs () (A23)
equation A21 becomes

£=-3 t@xt@sin{ 0~ 2 )= Ata sin{ -2 (A24)

To see that DG << B? away from the critical inclination, note that

Poa(@ = (-t 2D (A25)

Pyp41(0)=0 (A26)
Hence from equations AS and A6,

V(@) = Py(0)Py(cosi) # O only for £ even (A27)

Egno()= -ii;—lil’[(cos i)P,(0) % O only for £ even (A28)

hence by equation A14, S8, = Oonly for £ even, and the sum in equation A17 is over £ even
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3nJyR2(5 cos? i-1
B(a,))= - E nJl(R ) P (O)I:l(£+ )Pl(cosz)+cosd’l(cos1)] -——2—2—(-7——)-+--- (A29)
even { 2 2a

Using the identity (1—x2)P;(x)= nP,_1(x)~mxP,(x), P5(0)= nP,_1(0), hence by equation A5

P P o ne o . o
Vg 0= 2T, (0)T, (cosi) _ 2siniPj(0)Pj(cosi) _ 2siniPy_1(0)Fj(cosi) £0 for £ odd (A30)
2L+1) LL+1) £+1
and hence
. 3 e 2.
R\ e¢-1. . ) 3n/3R, smz(Scos z-l)
G(a,z):-zad“nll(—f) Hlsmx&_l(mp,(cpsoz 3 4o (A31)
~ Comparing with equations A22 and A23 reveals that A= G and hence
%te- =-G(a,i)cos w (A32)
The ratio G/B, to order J3, is
G |3wsRlsini(Scosi-1)| /| 3nnR2(5c0s?i-1)| g ini
- =~ =2 =y (A33)
B 4a3 » 24° 2a3

where e, is the J3 stcady state eccentricity. To get an expression for D, evaluate equation A6 at k=1,

Epo = 7 (z 1)Tt,(o)[cotzT, (cosi)— Tez(cosz)]

(A34)
—— Py (O){coszl’g_l(cosz) (£-1)sin ng_z(cosz)}

(2 +1)
Since T} (0) = P;(0), then by A6, E?m(z) o P§(0) = P;_1(0) # 0 only when £ is odd. Hence from A19,

DAa, ‘)——zt odd"‘"( ) - 1)Pl_l(O)cotx{cos:Pl_l(cosx) (£—1)sin xPl_z(cosz)}

(A35)
3 3nJ3Re cos? i

83 o7 (7coszi—5)+-~-

and thus
|B/ D} =|J3 /T3] >>1>> e3 =|G / B| (A36)
demonstrating that DG/ BZis small,” except near the critical inclination.

Non-Gravitational Forces
Lagrange’s planetary equations™ give the effect of a velocity perturbation,

Ae = (ifnaV1-€* Av,sin9+Ava(a/er)(1-ez—-r2/az)] . _ (A36)

1-—e2

Aw = —(1/nael1- €2 Av,cosO+AV9(a/er{1+ ]sin9+AvL:-e—couL(w+e) (A37)
a

r
a(l - e2)
Expanding to first order in eccentricity,
= (Yna)[Av, sin6 +(2—e cos 8)Avg cos 6] (A38)
Aw = (~1/nae)|Av, cos8 + Avg sin8(2— e cos 6) + Avpecotisin(w +6)] (A39)

* The ratio has a singularity when cos?i= 5/7 (i =32.37") orfor perfectly polar orbits, and hence the assertion may be
false there as well as at the critical inclination. TOPEX/Poseidon has an inclination of 66.04" so this difficulty does not arise.
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Then introduce a change of variables

Av=-’iiﬂus~—(1 —ecos E)AE (A40)
m AM AE
The second half of equation A40 is obtained by differentiating Euler’s equation
M=n(t-T)=E—-ecosE (Ad1)
giving,
n=dM/dt = (1—ecos E)dE/dt (A42)
Finally, the transformations
cosB=—@SE—_ez(cosE-e)(l+ecosE)scosE—esian (A43)
l1-ecosE '
sine-—l-‘[?iii"—E~sanE(1+ecosE) | (A44)
l1-ecosE
and their correspondmg first-order inverses
cosE =~ cos8 + esin® 0 (A45)
sin E = sin 8(1-ecos8) (A46)
are used to convert to a single anomaly variable. The total change of X € {e,w} over an orbit is
M= | Zap (A47)
1co2n] “?

where ¢ is either angular variable (E or 8), and dX/d¢ is obtained by expressing equations A36 or A37 in
terms of the chosen angular variable via the substitutions in equations A40 through A46 The interval of
integration / is the range of angles over which the force is nonzero. Drag is always nonzero, hence the
integral is taken over the entire range from 0 to 2n, whereas solar radiation pressure is only nonzero when
the satellite is not in the Earth’s shadow, and there is a smaller interval of integration. Finally, the long
term variation in the element is approximated by the change over a single orbit divided by period,
& Moy (A48)
&t 2n
Drag Perturbation on Eccentrzczty The change in eccentricity due to drag over a single orbit for a
satellite of mass m and constant area A normal to the direction of motion is given by Meirovitch®
AaCD(l —e2) 2z

(B [FESE o EaE ' (A49)

Ae=-—
l-ecosE

0
where p(E) gives the density as a function of the eccentric anomaly and Cj, is the coefficient of drag.
Keeping terms only to first ordcr ine,

de nAe
A S J' PEN1+ (e/2)cos E + T cos EdE = —K(py + eps) (A50)

where the orbital period is P=2m/n, n is the mean motion, K = naACp/m, p) = 1/21:)_[ P(E)cos EdE, and

pa = (1/27) f . p(E)cos? EdE.

Drag Perturbation on Argument of Perigee, To obtain an equation for the argument of perigee, we
start with Lagrange’s planetary equation for de/dt and follow Meirovitch’s method for obtaining equation
A49. Meirovitch (equation 12.32) obtains the following result by inserting the drag force into Lagrange’s
planetary equations:
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do  APCp(1-¢*)sin Apv’Cp(1-¢? )sin6(1 - ecos6)

a mnae\/1+e2+2ecos9 mnae

where @ is the true anomaly. By applying basic formulae for elliptical motion, he also obtains an
expression for the square of the velocity (equation 12.34):

(AS1)

22 2
n“a“{l1+ e + 2ecosf
V= ( > ) =n2a?(1 + 2ecos6) (A52)
1-e
Combining the last two results and expanding in terms of the small parameter e gives
gd.tg =—— p(9) sin8(1+ecosH) » _ (AS3)
Combining the last several results and keeping terms to first order in e gives
do _ dE __Kp
= dt = sm0(1+ecose)(1 ecosE)
= —(K/ne)sin E(1+ecos E)(1+ecos Ef1-ecosE) (AS4)
=—(K/ne)sin E(1+ecos E)+--
Then
d rd
- —"ldE-——(ps+p4)—— =2 (A55)

dt Drag 27!-' dE

where ps = p3 +p4, p3 = (Y27) IZZ(E)smEdE and pq = (I/27%) J’:ﬁ(E)sin Ecos EdE.

Along-Track Thrust Perturbation on Eccentricity. Assuming a continuos along-track thrust,
Aveosf 2€ (cos E-e)dE (AS6)
a

Aeypp =

Letting T=mdv/d: and making a circular orbit approximation (v=na , Av/v = Aaf2a, T =(mv[2a)da/dt),

de n n 2T -

T 2 Do =y 5 — {(WSE—C)“E-—W‘“‘——— (AST)
Along-Track Thrust Perturbation on Argument of Perigee. A continuous along-track thrust has no
affect upon the argument of perigee. Substituting equations A40 and AS6 into A37,

Am:—F(l_e)sinE[ L_, 12]45 (AS®)

mnzaez l-ecosE 1—-e

which is an odd function in eccentric anomaly. Hence the integral over an orbit is zero.

Solar Radiation Pressure Perturbation on Eccentricity. The satellite is treated as a perfectly

reflecting sphere, and hence the only momentum transfer is along the sun-satellite line. The geometry is
illustrated in figure 11. The force can be expressed as* F=SACp/c, where A is the cross-sectional area

normal to the sun line, ¢ is the speed of light, § is the mean solar radiative flux at the earth, Cp is a
constant which partially accounts for differences from sphenc1ty and ideal reflection,
5o 1358 w2
1.0004 + 0.0334 cos d

and d is the temporal phase angle measured in radians from July 4 (one year = 2x). Expressing the satellite
to sun unit vector in terms of the angles B (the declination of the sun above the plane of the satellite’s

(A59)
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orbit) and & (measured in the plane of the orbit from perigee to the projection of the carth-sun line onto the
satellite’s orbit), the radial, along track and transverse components of the radiative force are

F= (—F cos Bcos(§-a), FcosBsin(0-c), Fsin ﬂ) (A60)

Orbit in Shadow

Orbit in Sunlight

Cone of Ez}rth’s Shadow

Figure 11. Geometry of solar radiation pressure petturbation.

Substituting equations A60 and A40 through A46 the change in eccentricity over an orbit is

Foosf a+AQ
Aegry = —5 j (1-ecos E)[2 cos85in(6 ~ ) —sin 8 cos(6 — a)|dE (A61)
n a-~Af
Differentiating equation A42 and applying equation A4S, the variable of integration can be changed to 6,
dE(1-ecosE) = d6(1—2ecos8) ' (A62)
Integrating equation A61 and only keeping terms to lowest order in e,

de _nhey; FcosB'sina

& 2z = 2mam
where the entire right hand side has been lumped into the function H(a,f) to highlight the exsplicit
independence of de/d: from either e or @. The shadow entrance and exit angles are given by Escobal® as a
quartic in cosé. For a circular orbit the solution reduces to a quadratic, and

Ab=m— cos_l{[l -(R, /a)2]1/ 2 /cos ﬂ'} | (A64)

{~2A6+cosasin A6[1+4 cos a cos A8]} = H(e, ) (A63)

Solar Radiation Pressure Perturbation on Argument of Perigee. Substituting equations A60 and
A60 into A39 and keeping only terms to the lowest order in e, the orbital change in @ is

a+A8
AWyyp = —F2 I[—cosﬁ’cos(e —~ a)cos8 + 2cos B’ sin(6 — )sin 840 (A65)
" a-A6
Expanding the trigonometric functions in equation A65,
-F a+Ab a+Afl
Awyp = 5 {—cosﬁ'cosa foosz 6d6 —cos p’sina JmsOsianGdG
maen a-Af a-a8 (AG6)
a+A6 a+A8
+2cos f’cosa jsinz 646 — 2cos f’sina jsineoosade}
a-A6 a-Aé

* Ignoring variations due to the satellite orbit itself, which =a’/R” when R is the earth to sun distance.
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The integrals in equation A66 can be evaluated by observing that

a+Al
Jcos? 6a = A6+ cos2asin 248 (A67)
a-A6 2
a+Af
jcosGsdeG = —sm2asm2A6 (A68)
a-A8
a+A6
jsm 0d0 = A6—— cos2a sin 2A8 (A69)
a-A8 2
The long term perturbation on e is then _
ii_c_o_ - nA@yrp - —Fcos B’ cosa {AG— (ZAG)] V_V(_a,_e_')_ (A70)
dt 2% 2nnmae e

where the geometric variables have been grouped into the function W(a,8).
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